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Abstract. A model for space-filling packing of discs rolling sliplessly on each other is presented.
This model is an extension of the model presented by Herrmannet al to a basic loop size of an
arbitrary even number of discs. This model might have application in geophysics, dense granular
flows and turbulence. We show the existence and uniqueness of such constructions, analytically, for
loop size up to eight, and numerically for bigger basic loop sizes, and make precise the algorithm
to construct them. A classification of the solution is also given and extensive studies of the fractal
dimension are performed, showing that it varies considerably with the base loop size.

1. Introduction

Is it possible to fill a two-dimensional (2D) plane with gears all rolling on each other such that
the entire area is covered with wheels? The study of such a question emerged in the context
of tectonic plate movement in [1, 2] as a possible explanation of the enigmatic geological
phenomena known as ‘seismic gaps’ [3, 4]. Seismic gaps are regions along an active plate
boundary where two tectonic plates can creep on each other without liberating, in the form of
earthquakes or heat, the expected amount of energy from frictional forces. It can be conceived
that the granular material filling the space between the two plates, known as ‘fault gauge’, is in
fact partially arranged in rolls in such a manner that it behaves like gears in a bearing, rolling
sliplessly on each other, and hence not exerting much frictional work, thus permitting a creep
with a very low energetic cost. Other contexts where such constructions might play a role are
turbulence (especially 2D) and dense granular flows.

Since any two circles in contact are rotating in opposite directions, a 2D packing of
bearings has no rotational frustration if and only if any closed loop of touching circles in the
packing has an even number of discs.

Tiling the space with circles by iteratively placing, between every three circles, a circle
tangentially touching all three is an old problem known as ‘Apollonian packing’ and dates
back to the Greek mathematician Apollonius of Perga (now known as Murtana in Antalya,
Turkey) who lived around 200 BC and was the first to show how to construct a circle which is
at a tangent to three given circles. In modern times, much work has been done mainly aimed
at obtaining estimates of the fractal dimension of Apollonian packings, which is about 1.306,
by both theoretical estimations [5,6] and numerical calculations [7]. (In this paper we do not
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distinguish between the ‘Hausdorff dimension’ and the ‘box-counting dimension’ and suppose
them equal. For further discussion of this issue see [8].) This packing presents exactly the
opposite characteristic of what we are looking for, since every closed loop has anoddnumber
of bearings, hence the Apollonian packing is completely ‘locked’.

The existence of strip filling with discs without rotational frustration, baptized ‘space-
filling bearings’ (SFBs), was proven in [1] using a method based on iteratively applying
conformal transformations: reflections, translations and inversions. It was shown that there are
two different families, denoted by families 1 and 2 (F1 and F2, respectively), each one having
different realizations parametrized by two positive integers(n1, n2). The fractal dimension of
these families was also numerically estimated to lie in the range between 1.306 and 1.520 [1,7].
This idealized gauge modelling permitted a theoretical estimate of properties such as fault-
gauge size distributions as measured in [9–11], and remanent magnetization in rocks issued
from cataclastic shear flow [12].

Nevertheless, the study in [1] was limited to SFBs with a ‘basic loop’ size of four elements:
i.e., constructions in which all closed loops of the bearings are, at least, four discs in size (this
term will be defined more precisely below).

The aim of this work is to prove the existence and study the properties of SFBs with a basic
loop size larger than four discs. We will first introduce a variant of the study presented in [1]
which is more adequate for the general case and that will lead us to conclude the existence
of SFBs with a larger, even number of bearings in their basic loop. We will show that, as for
the four-fold loop case, for each given basic loop size, there exists two topologically different
families of SFBs, each one having an infinite number of different realizations described by two
integers. This will be followed by a study of the properties for the different possible solutions,
especially their fractal dimension.

The layout of this paper is as follows: in section 2 we show the method used for the
construction of general loop size SFBs. In particular, we discuss the working assumptions
(section 2.1), the notation used (section 2.2), the choice of the transformations (section 2.3),
the conditions that the transformations must fulfil (see section 2.4 with complementary
mathematical details given in the appendix) and how the construction algorithm is effectively
implemented utilizing a computer (section 2.5). In section 3 we discuss the issue of the
fractality of the constructed set, and in section 4 we present some examples of general loop
size SFBs we have calculated and study their size distribution. Section 5 contains a discussion
of the results in the light of the experimental work presented in [9–11,13].

A more detailed version of the work presented here can be found in [14] in which the
working assumptions and the choice of the transformations (sections 2.1 and 2.3, respectively)
are discussed extensively.

2. Construction of a generalized base loop size SFB

2.1. Working assumptions

In the construction of SFBs we fix several working assumptions. First of all we use
homographic transformations (also known as Möbius maps) of the first (that conserve the
orientation) and of the second kind (that do not conserve it). In the complex representation of
the plane the homographic transformations of the first kind can be written as

C(z) = az + b

cz + d
with a, b, c, d ∈ C (1)



Generalization of space-filling bearings to arbitrary loop size 1419

or represented in matrix form as

M =
(
a b

c d

)
(2)

with det(M) = ad − bc = 1. In particular, these transformations contain the rotations by
an angleθ (a = exp(iθ/2), d = exp(−iθ/2), b = c = 0), translations of a vectorv ∈ C
(a = d = 1, b = v, c = 0) and dilatations by a factorα (a = α 1

2 , b = c = 0, d = α− 1
2 ). The

homographic transformations of the second kind are defined in a manner similar to (1), but
replacingz by z̄, the conjugate ofz. The last category contains, in particular, the inversions
around a circle (a = iv/r, b = i(r2 − v2)/r, c = i/r andd = −iv̄/r, wherer is the radius
of the circle andv is its centre) and reflection about a straight line (if this line intersects the
real axis inu making an angleφ with it, then a = exp[iφ], b = −2ui sin(φ), c = 0 and
d = exp[−iφ]). Recall that the homographic transformations of the first kind form a group
for the composition (given by the product in the matrix representation), while those of the
second kind do not. Moreover, the composition of two homographic transformations of the
second kind is a transformation of the first kind, while the composition of two transformations
of different kinds gives a transformation of the second kind [15].

The choice of the homographic transformations resides in the fact that they transform a
circle into a circle (a straight line is considered to be a circle with infinite radius) and conserve
the topology; if the source was a closed loop of an even number of discs then an image produced
by any of the above transformations will be a loop of the same number of discs. Hence, if
we start with a ‘seed’ of any even number of elements and apply any sequence of these
transformations, and if the obtained set of circles is a packing, i.e. if no overlap occurs, then
the ensemble of images obtained will all have the same topology and hence the SFB condition
will be satisfied. The number of circles in the seed is called the ‘base loop size’ (BLS). Since
every one of the circles is an image of another produced by one of the transformations, the
final set must be invariant under any of the constructing transformations.

The second working assumption is that, for simplicity in the calculations and in the light
of the geometry of the physical system, we choose to work in a strip geometry of unit width,
or in other words, we choose the seed to be composed of two parallel lines and a sequence of
circles connecting them. Since the two straight lines ‘touch’ at the point of infinity the seed is
indeed a closed loop. This property will be used later in order to determine the parameters of
the transformations.

This choice of geometry does not limit the generality of the results since once the
construction of the strip is complete one can apply any of the transformations cited above,
or any of their combinations in order to get different geometries, such as a disc, as shown in
figure 1. One can even combine different realizations of SFBs, for example, putting different
strip configurations on top of one another, or replacing one of the discs in the set with a whole
SFB in a disc geometry, etc. Note also that,stricto sensu, simple shearing is not possible
with the SFB model since the parallel lines must move in the same direction. It is, however,
possible when allowing a slight curvature of the boundaries as may be obtained near a contact
point of two circles. Since an interface is never perfectly straight, this artifact has no physical
importance. One last assumption is that the strip has a translational invariance with a period
of 2a. Sincea is now any number this is not a restriction.

2.2. Notation

Before continuing any further, let us define some of the notation we use in what follows (see
figures 2 and 3 for an illustration of this notation).
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(a) (b)

Figure 1. Rolling SFBs of F1 with a BLS of six elements,n1 = 0 andn2 = 1 (the meaning of
these parameters is explained in the text). (a) A strip geometry and (b) a circular geometry obtained
from (a) by an inversion.

(i) We denote the BLS asl, or the size of the seed as discussed in section 2.1. We also define
p = l/2− 1.

(ii) 0i , wherei = 0, . . . , l − 1, will refer to theith circle in the seed, where00 is the lowest
one (the lower line) and0l−1 is the uppermost one (the upper line).

(iii) Ai , wherei = 0, . . . , l − 2, are the contact points0i ∩ 0i+1.
(iv) Finally, di , wherei = 1, . . . , l − 2 designates the distanceA0Ai .

2.3. Choice of the transformations

In order to cover the plane in the most effective way we will choose the biggest class of
homographic transformations compatible with the hypothesis. Let us first focus our attention
on the inversions. It is clear that if the strip is to be invariant under them, these inversions
must be centred on a contact point between two circles. This is because in this case the image
of these two circles would be two parallel lines. Since any circle is either in the seed or is
an image of a circle which is in it, we can restrict our choice to the contact point in the seed
Ai . First, we arbitrarily choose pointA0 to be the centre of the first inversionI1 (see figures 2
and 3). Since the seed must be invariant under this inversion it must be arranged so thatA0,
Ai andAi ′ = I1(Ai) are aligned. One can show that this also implies that all of the contact
points in the seedAi are aligned alongA0Al−2 [14].

Two different cases are possible, eitherA0Al−2 ⊥ 00, or otherwise. In the first case
we will deal with ‘F2’ construction (shown in figure 3) and in the latter case with ‘F1’ (see
figure 2).

When reflections are considered for the two families the strip geometry and the
translational invarianceT = z → z + 2a permit only reflection symmetry about the vertical
liness1 ands2 of equations Re(z) = 0 and Re(z) = a respectively, shown in figures 2 and 3.
We denote these reflectionsR1 andR2 respectively. In the F1 case this implies that consecutive
copies of the seed touch each other.

It is easy to see that these transformations alone do not fill the whole strip but only the
region close toA0, hence we must add another inversion—we choose an inversionI2 centred
atAl−2 and of radiusr2. One can check, by trying to solve the equation systems that we present
in the following (equations (4) and (5)), that this is the only topological situation possible for
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Figure 2. Notation used in the construction of F1 strips. The strip shown depicts six-element BLS
SFBs withn1 = 2 (for the inversion centred atA0) andn2 = 3 (inversion centred atA5). In this
figure we only kept circles with radii greater than 10−2 of the strip width. The dashed circles are
the inversion circles forI1 andI2, of radii r1 andr2, respectively. The liness1 ands2 are the axes
of the reflectionsR1 andR2, respectively. The circles and lines drawn in bold are elements of the
seed. The notation used for the seed circles00, . . . , 05, the contact pointsA0, . . . , A4, and the
spatial periodicity 2a, are also displayed.

the inversions, i.e. centred at contact points separated by a distance of two circles from one
another.

The question one should answer in order to complete the construction of the SFB is ‘what
are the different parameters (radii of the inversionsr1 andr2, a) that will create a packing?’ In
other words, no overlap of circles occurs after each transformation.

It was shown in [1], using the packing properties proved in [16] which make use of
reflection groups, that in the case of SFBs the transformations introduced above produce a
packing if and only if there exists a base in whichRI is a translation or a rotation of an angle
2π/k, k ∈ N+. This condition is equivalent to (see [14] for more details)

r2
1 = a2zn1 (3a)

r2
2 = a2zn2 (3b)

where

zk ≡
(
cos

π

k + 3

)−2
k ∈ N. (3c)

n1 + 3 andn2 + 3 might be interpreted as the size of the group of transformations that can be
created by the composition of the respectiveRI with themselves, i.e.{(RI)(n), n ∈ N}. Or, in
other words,n1 + 2 andn2 + 2 are the number of transformationsRI that one should apply to
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Figure 3. Notation used in the construction of F2 strips. The strip shown depicts six-element BLS
SFBs withn1 = 1 (for the inversion centred atA0) andn2 = 2 (inversion centred atA5). In this
figure we only kept circles with radii greater than 10−3 of the strip width. The dashed circles are
the circles of the inversionsI1 andI2, of radii r1 andr2, respectively. The liness1 ands2 are the
axes of the reflectionsR1 andR2, respectively. The circles and lines drawn in bold are elements
of the seed. The notation used for the seed circles00, . . . , 05, the contact pointsA0, . . . , A4, and
the spatial periodicity 2a, are also displayed.

the seed before no new images might be created. This fact will be used later in the construction
itself (see section 2.5).

2.4. The equation systems for the seed

In this section we present the equations that need to be solved in order for us to get the parameters
of the constructing transformations. In both cases, F1 and F2, we will write the invariance of
the seed under the inversions followed by the packing condition given in (3). Since any circle
is an image of the seed these condition suffice to ensure that the whole construction adheres
to the SFB conditions, i.e., that it forms a packing and that the no-slip rolling condition is
satisfied everywhere.

2.4.1. F1. The invariance condition of the seed under the inversionI1 centred atA0, and of
radiusr1, gives

d1d2p = r2
1 d2d2p−1 = r2

1, . . . , dpdp+1 = r2
1 . (4a)
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The invariance condition of the same seed under the inversionI2 centred atAl−2 = A2p, and
of radiusr2, gives

d2p(d2p − d2p−1) = r2
2

(d2p − d1)(d2p − d2p−2) = r2
2, . . . , (d2p − dp−1)(d2p − dp) = r2

2 .
(4b)

We apply Pythagoras’ theorem to the triangleA0Al−2B:

a2 + 1= d2
2p (4c)

and the packing condition as discussed above (equation (3)):

r2
1 = a2zn1 r2

2 = a2zn2 zk ≡
(
cos

π

k + 3

)−2
k ∈ N (4d)

to obtainl + 1 nonlinear equations withl + 1 unknowns.
The nonlinear equation system obtained from (4a)–(4d) can be solved analytically for

small l (at most eight, see appendix A.2), and numerically for largerl, yielding multiple
solutions. However, in all studied cases we have found only one positive and ordered solution,
i.e. so that 0< d1 < d2 < · · · < dl−2. This solution provides us withr1, r2 anda, hence
permitting the iterative construction of the SFB strip.

2.4.2. F2. The equations describing the invariance of the seed under the inversionsI1 andI2

are the same as those obtained for F1 in (4), but instead of (4c) we now haved2p = 1, which
follows from the orthogonality ofA0A2p with 00 and0l−1, and from the fact that the strip
width is unity.

The condition to obtain a packing is the same as for F1 (equation (3)), thus the nonlinear
equation system to solve in the F2 case is

r2
1 = d1d2p r2

1 = d2d2p−1, . . . , r
2
1 = dpdp+1 (5a)

r2
2 = d2p(d2p − d2p−1), . . . , r

2
2 = (d2p − dp−1)(d2p − dp) (5b)

1= d2p (5c)

r2
1 = a2zn1 (5d)

r2
2 = a2zn2 where (5e)

zk ≡
(
cos

π

k + 3

)−2
k ∈ N. (5f)

This equation system is slightly easier to solve than the equation for the F1 case and
was solved analytically for smalll (at most eight, see appendix A.3 for further details) and
numerically for largerl. As for F1, multiple solutions were found but only one of these solutions
was positive and ordered. The solution provides us withr1, r2 anda, hence permitting the
iterative construction of the SFB strip.

2.5. The implementation of the construction algorithm

The construction algorithm is based on the fact that translations of circles far from the inversion
points will, when inversion is applied, create circles with smaller and smaller radii that will fill
the empty wedges near the seed. Givenl, n1, n2 and the family, we first write the corresponding
equation system (equations (4) or (5)), solve it analytically, for smalll (see appendices A.2
and A.3 for further details) or numerically for biggerl. For l smaller than 20, Mathematica’s
implementation of Jenkins–Traub algorithm for polynomial roots calculation was used. This
method provides all of the roots from which the ordered, all positive solution was picked. For
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higherl the damped Newton method implemented in Mathematica was used. In all cases, 16
decimal precision floating point numbers were used. For further details on the implementation
of these algorithms see [17].

Whenr1, r2 anda are obtained, the strip is initialized by placing00 and0l−1 (there is no
need to add the other elements of the seed since they will all be created as images of00 and
0l−1). The sequence of transformations

R1I1 (R1I1)
(2), . . . , (R1I1)

(n1+2) (6)

is then applied. The same is done for the upper part of the strip withR2, I2 andn2, followed
by the translationT . Only the circles with radii larger than a certain fixed sizeε are kept (most
of the time we choseε = 3× 10−4 and get up to about 4× 104 circles, which gives enough
statistics for the determination of the fractal dimension with reasonable calculation time). The
process is repeated until no new circles can be created. An illustration of the construction
procedure showing two iterations is given in figures 4 and 5.

A technical difficulty resides in the fact that this procedure creates many repeated circles.
These must be eliminated to have the correct statistics and in order to reduce computer memory
consumption. The construction procedure was programmed using Mathematica symbolic
calculation software in order to have control over the accuracy of the calculations. External
C functions were used for the elimination of repeated circles which proved to be very time
consuming, but with no risk of accuracy loss. The calculation time forε = 3× 10−4 varies
from several hours up to a few days (largern1 andn2) on a 400 MHz Pentium II computer.

3. Fractality and fractal dimension

The packings we have just constructed are fractal since the construction procedure is scale
invariant (even though not in a simple manner) and has a fine, irregular structure [8]. To define
the fractal dimension of these ensembles, one can consider the numberN(ε) of circles of radii
larger thanε, the sum of their perimeterss(ε) and the area not covered by the circles (or the
‘porosity’) p(ε). If one denotes asn(r) the distribution of the radii size per unit area, these
quantities are linked by

N(ε) =
∫ ∞
ε

n(r)dr (7a)

s(ε) = 2π
∫ ∞
ε

rn(r)dr (7b)

p(ε) = 1− π
∫ ∞
ε

r2 n(r)dr. (7c)

If n(r) obeys a simple power lawn(r) ∼ r−τ , then

N(ε) ∼ ε−df s(ε) ∼ ε1−df p(ε) ∼ ε2−df (8)

wheredf = τ − 1 is the fractal dimension [18]. Because of these simple relations only the
cumulative size distributionN(ε), will be considered in the following.

4. Examples of SFBs

Let us now present the properties of different realizations of SFBs (different families,l, n1 and
n2) produced using the construction method described in section 2.5.
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Figure 4. Illustration of the SFB construction steps. The parameters used here arel = 6, n1 = 1
andn2 = 1. We draw with a bold curve the elements of the seed, with dash-dotted lines and
curves the transformation applied in the current step with a dashed curve the circles subject to
the homographic transformation with their images shaded in grey. The sequence is continued in
figure 5.

In figure 6 we show examples of F1 SFB strips with differentl, n1 andn2, while in figure 7
we present F2 strips with the same parameters. Figure 8 shows the evolution of a SFB with a
BLS of six elements whenn1 andn2 are varied. Notice that in many cases internal structures
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Figure 5. Second part of the illustration of the SFB construction steps (see figure 4 for the first
part).

such as lines or circles appear, where circles of small size accumulate. Notice, also, that for
high BLS, circular ‘holes’ (and all their images) appear for both families. It is interesting to
observe that these holes sometimes take the place of ‘real’ circles. For example, 4,(0, 0) of F2
in figure 7, which has no holes, is topologically identical to the F1, 6, (∞,∞) in figure 8, with
the only difference being that the top seed circle (and its images) in the F2 case are replaced
by circular holes in the F1 case.

An example of the cumulative size distributionN(ε) for two different realizations is shown
in figure 9. These distributions are clearly power laws and provide us withdf using (8). The
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Figure 6. Some examples of F1 SFBs, for different(n1, n2) and BLSs. Ordered from left to right
and from top to bottom, in the formatl, (n1, n2): 4, (0, 0), 6, (0, 4), 8, (1, 1), 10,(0, 1), 12,(0, 2)
and 30,(1, 2).

distribution deviates from the power law due to finite-size effects at radii greater than about
0.01 of the strip width.

Figure 10 gives some examples of the evolution ofdf with l for several different(n1, n2).
It shows that the evolution ofdf is different for the two families. First of all,df for F1
is nearly always larger than for F2 (F1 ranges from 1.304 to 1.803, and F2 ranges between
1.362 and 1.701), thus showing that the topological difference between the two families gives
rise to large differences in the way the strip is filled. The behaviour for increasingl is also
different; while F2 is nearly always decreasing, F1 is increasing for lowl up to a maximum at
l = 12 and then decreases. Both families seem to converge to an asymptotic value for largel.
Some fluctuations are observed for highn1 or n2. Another interesting point is that forl = 4,
(n1, n2) = (∞,∞) the Apollonian packing is obtained, showing that it is a special case of
SFB. The fractal dimension obtained in this case isdf = 1.3044± 0.009 which is compatible
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Figure 7. Some examples of F2 SFBs, for different(n1, n2) and BLSs (the same as shown in
figure 6). Ordered from left to right and from top to bottom, in the formatl, (n1, n2): 4, (0, 0), 6,
(0, 4), 8, (1, 1), 10,(0, 1), 12,(0, 2) and 30,(1, 2).

with other values in the literature [6, 7]. The value of the fractal dimension in this case is
also the smallest among all SFBs calculated. This fact is compatible with a conjecture of
Besicovitch which claims that the fractal dimension of the Apollonian packing is the smallest
of all possible fillings of the plane [19,20].

It is also interesting to study the part of the strip that is uncovered by the discs due to the
existence of holes. From equation (7c) it is clear that this part is given byp(0) and can be
easily deduced from the power-law fit ofN(ε). The evolution ofp(0) with l for different SFB
realizations (the same as those of figure 10) is presented in figure 11. We find that, as fordf , the
two families evolve in a different range ofp(0) values, the second family having much higher
values and hence being much emptier than the first family. On the other hand, the evolution
of p(0) is similar for the two families sincep(0) is always increasing. One other observation
is that very few SFB realizations effectively fill the whole strip, i.e. cases wherep(0) = 0.
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Figure 8. Some examples of F1 SFBs, forl = 6 and for different(n1, n2). Ordered from left to
right and from top to bottom, in the format(n1, n2): (0, 0), (0, 1), (0, 2), (1, 2), (2, 2) and(∞,∞).

5. Discussion and conclusions

In this paper we have shown the existence and studied the properties of SFBs with a basic
loop having an arbitrary number of discs. We conclude that, as for the fourfold case, two
topologically distinct families exist, the first having its consecutive copies of the seed touching
each other and the second not, each one depending on two integer parameters(n1, n2). We adapt
the technique used previously in [1] to arbitrary loop sizes and formulate the equations that
need to be fulfilled for the set of circles to be space filling. For low BLSl, we can analytically
prove the existence and uniqueness of the solution. For largerl we can only conclude that
this was always the case observed numerically for any parametersl, n1 andn2 we have tried,
and we believe that this is a general feature. This method permitted us to construct SFBs for
various loop sizes and to study their properties, in particular their fractal dimension, which we
have shown to be within a certain range of values (from 1.306 to 1.802) and which depend
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Figure 10. Variation of the fractal dimensiondf as a function of the BLS for the two families
(F1—full curves and full symbols, F2—dashed curves and open symbols) for different(n1, n2).
The determination error ofdf is of the order of the symbol size.

strongly on the chosen family, and onl.
This construction might be used as an idealized model for gauge materials or dense

granulates in flows or in shear bands, and the extension we give here for larger BLS might give
a more complete modelling than the four-element BLS given in [1]. In fact, it appears from
figures 6 and 7 that the larger the BLS the greater the dominance of the small-sized circles,
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Figure 11. Variation of the fraction of uncovered areap(0) as a function of the BLS for the two
families (F1—full curves and full symbols, F2—dashed curves and open symbols) for different
(n1, n2). The determination error ofp(0) is of the order of the symbol size.

which fits more closely to the observations of real gauge materials, naturally (e.g. sampled
from the Lopez Canyon fault in the San Gabriel Mountains in Southern California, [9,13]) or
experimentally found in shear bands produced in a shear cell, [10,11].

In fact, in the references just quoted, when quartz sand withdf = 0.8 (in 2D projection)
is subject to cyclic shear its size distribution changes, and its fractal dimension can reach about
1.7 when high shear rates are applied. In the real fault gauge, [9] reports values from 1.41 to
1.74. With the extension to arbitrary loop sizes this entire range can be covered by the SFB
construction. We believe that the gauge under shear is pulverized and reorganizes itself into a
form close to a SFB in order to minimize its energy loss due to friction.

A close look at the cumulative size-distribution figures shows that the upper limit for the
power law distribution of sizes is of the order of 0.008 of the size of the strip; in fact, this upper
cutoff was used in all of our calculations of the fractal dimension as the limit of applicability
of (7). In [13] for the size distribution of a real fault gauge, the upper fractal limit observed
was about 1 cm. If the width of the fault is taken to be about 1 m the SFBs reproduce this
property in agreement with the measured data.

In the future it would be interesting to investigate the possibility of building 3D SFBs.
However, since the method used here depends on the properties of the complex plane, the 3D
generalization might presently be hard to achieve.

Appendix A

A.1. Properties ofz

In this section we will prove the following proposition.

Proposition 1. 1< zn ≡ cos−2[π/(n + 3)] 6 4, ∀n ∈ N.

In order to prove this property, we will first study the functionz(x) = cos−2[π/(x + 3)],
for x ∈ [0,∞[. Sincez′(x) = −2π sec2(π/(x + 3)) tan(π/(x + 3))(x + 3)−2 < 0 in this range,
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z(x) is strictly decreasing, and sincez(0) = 4, limx→∞ z(x) = 1 andz(x) is continuous, we
conclude that 1< z(x) 6 4. This inequality still holds forN which is a subset of [0,∞[,
hence the property.

A.2. Analytical expressions of the solutions for F1 and lesser BLSs

In this section we give the analytical solution for the equation system (4) for BLSs up to
eight. For anyl, the solution was obtained by eliminating in equation system (4) the variables
r1, r2, a andd1, . . . , dl−3, obtaining a polynomial equation indl−2. This equation was then
solved either analytically, for smalll, as we will describe in this section, or numerically for
higherl. We will show in this section the existence and uniqueness of the solutions forl up to
eight and for alln1 andn2. We have numerically observed that this is also the case for higher
l, but were unable to prove it.

A.2.1. F1—four-loop case.As mentioned previously, the case of a four-element BLS strip
was treated in [1]. However, the method used was somewhat different from the one used
here. The circles in seed were described by their radii rather than their contact points. This
method was inadequate in the case of higher BLS since the invariance under the conformal
transformations are complicated when the strip is represented in this manner.

In this case the polynomial equation ford2 is

−zn1 − zn2 + (zn1 + zn2 − 1)d2
2 = 0. (A.1)

This equation has two real roots,d2 = ±(1− 1/(zn1 + zn2))
−1/2, of which only the positive

one is to be considered. When introduced into (4a) and (4b) the expressions ford1, r1 andr2
are easily obtained, i.e.

d1 = zn1/
(√
(zn1 + zn2)(zn1 + zn2 − 1)

)
(A.2)

r2
1,2 = zn1,2/(zn1 + zn2 − 1). (A.3)

Using (4c) and (4d) one can also retrieve the radii of the seed circles which are identical
to the ones found in [1,2].

A.2.2. F1—six-loop case.In the six-loop case the polynomial equation ford4 is given by

z2
n1

+ z2
n1

+ zn1zn2 + (2zn1 − 2z2
n1

+ 2zn2 − 2zn1zn2 − 2z2
n2
)d2

4 + (1− 2zn1 + z2
n1
− 2zn2

+zn1zn2 + z2
n2
)d4

4 = 0 (A.4)

which is a quadratic equation ind2
4 having the discriminant 2zn1zn2, hence having two real

solutions ford2
4. A trivial study of this equation, using the fact thatzn1 > 1 andzn2 > 1,

proves that both roots are positive, so that (A.4) has four different roots with exactly two of
them positive. From the two solutions ford4,

d4± =
(

zn1 + zn2 ±√zn1zn2

zn1 + zn2 − 1±√zn1zn2

)1/2

(A.5)

only d4+ is acceptable since, from (4d) and (4c), we haver2
1 = (d2

4 − 1)zn1 and it is easy to
check that ford4− we always getr1 > 1, which is inadequate since the inversion circle will
cross the line04 and hence the circle01 will have a diameter greater than the band width.

The distancesa, d1, d2, d3 and the inversion radii are deduced straightforwardly fromd4

using (4a) and (4b).
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A.2.3. F1—eight-loop case.The polynomial equation obtained ford6 is

z2
n1

+ z2
n2

+ d2
6(2zn1 − 2z2

n1
+ 2zn2 − 2z2

n2
) + d4

6(1− 2zn1 + z2
n1
− 2zn2 + z2

n2
) = 0 (A.6)

which is a quadratic equation ind2
6 with a discriminant 8zn1zn2, thus having two real solutions

in d2
6:

d2
6± =

z2
n1

+ z2
n2
− zn1 − zn2 ±

√
2zn1zn2

z2
n1

+ z2
n2
− 2zn1 − 2zn2 + 1

. (A.7)

A short numerical study ofr2
1 = (d2

6−1)zn1 shows that onlyd6− has the adequate properties
explained in appendix A.2.2. All the other unknowns of the equation system are deduced from
d6 using (4).

A.3. Analytical expressions of the solutions for F2 and lesser BLSs

In this section we give the analytical solution for the equation systems (5) for BLS up to eight.
For larger BLS a numerical solution was found. In all cases a unique all-positive solution was
found. For the F2 case, it is more useful to arrive at a polynomial equation involvinga rather
thandl−1 = d2p.

A.3.1. F2—four-loop case.For a four-loop F2 case the equation is

a2 = (zn1 + zn2)
−1 (A.8)

from which the other parameters are easily retrieved using (5). The results are the same as the
one obtained in [1,2].

A.3.2. F2—six-loop case.The polynomial equation fora in this case is

(z2
n1

+ z2
n2

+ zn1zn2)a
4 − 2(zn1 + zn2)a

2 + 1= 0. (A.9)

Again, this equation is a quadratic one with regard toa2, having 4zn1zn2 as its discriminant,
thus having two real roots fora2 of which only one is positive; hence only one solution is
possible fora:

a = (zn1 + zn2 +
√
zn1zn2

)−1/2
. (A.10)

All the other unknowns (d1, d2, d3 andd4) are obtained straightforwardly from (5).

A.3.3. F2—eight-loop case.In this case the polynomial equation obtained after eliminating
the variablesdi is

(z2
n1

+ z2
n2
)a4 − 2(zn1 + zn2)a

2 + 1= 0. (A.11)

Since the discriminant is 8zn1zn2 > 0, there are two real roots fora2, which are

a2
± =

zn1 + zn2 ±
√

2zn1zn2

z2
n1

+ z2
n2

. (A.12)

We discarda+ since ifa = a+ then from appendix A.1r2
1 + r2

2 = (x + y)(x + y +
√

2xy)/
(x2 +y2) > 2+

√
2 and at least one of the inversion radii is greater than 1, which is impossible.

So, in this case also, one can have only one possible solution derived froma = a− and (5).
Analytical solutions for higher BLS (up to 12-loop) do exist for F2, but these are too

complicated to present here, and we were unable to analytically prove the uniqueness of the
solution.
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